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 The reliability of electrical systems in solar power plants is critical to 
ensuring continuous energy production and minimizing operational 
downtime. Unexpected failures in components such as inverters, 
transformers, and distribution panels can lead to significant energy losses 
and increased maintenance costs. This study presents the implementation 
of machine learning (ML) techniques to predict potential electrical system 
failures in solar power plants. Historical operational data, including 
voltage, current, temperature, and environmental parameters, were 
collected from multiple photovoltaic (PV) installations and preprocessed 
for model training. Various ML algorithms such as Random Forest, 
Support Vector Machine, and Gradient Boosting were evaluated for their 
prediction accuracy and robustness. The best-performing model achieved 
an accuracy of 94.3% and demonstrated strong capability in early 
detection of abnormal operating conditions. Predictive insights were 
integrated into a monitoring dashboard, enabling proactive maintenance 
scheduling and reducing unplanned outages. The findings highlight the 
potential of ML-based predictive maintenance strategies to enhance the 
operational efficiency, reliability, and cost-effectiveness of solar power 
plant electrical systems. 
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1. INTRODUCTION 

In recent decades, the global energy sector has undergone a significant transformation driven by the 
urgent need to reduce greenhouse gas emissions and mitigate the effects of climate change. The rapid 
depletion of fossil fuel reserves, coupled with growing concerns over environmental degradation, has 
accelerated the adoption of renewable energy technologies. Among various renewable sources—such 
as wind, hydropower, biomass, and geothermal—solar photovoltaic (PV) technology has emerged as one 
of the most promising solutions due to its scalability, declining costs, and minimal environmental 
footprint. Solar power plants, particularly large-scale PV installations, play a crucial role in meeting 
renewable energy targets worldwide. These facilities convert sunlight directly into electricity using PV 
modules, which are connected through a complex electrical infrastructure that includes inverters, 
transformers, switchgear, monitoring systems, and grid interconnection equipment. While the PV 
modules themselves generally have long operational lifespans and low maintenance requirements, the 
supporting electrical systems are prone to a variety of failures that can significantly impact the plant’s 
overall performance and economic viability.  

The operational reliability of a solar power plant depends not only on the efficiency of energy 
conversion from sunlight but also on the stability and dependability of its electrical components. Failures 
in these systems—whether due to equipment degradation, electrical faults, or environmental stresses—
can result in unexpected downtime, reduced energy output, and increased maintenance costs. 
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Consequently, developing effective strategies to predict and prevent such failures has become a priority 
for plant operators and energy companies. Solar power plants operate in diverse environmental 
conditions, ranging from hot deserts to humid coastal regions. These environmental factors can 
accelerate wear and tear on electrical components. High temperatures can cause insulation degradation 
in transformers, while dust accumulation can lead to overheating of inverters. In coastal areas, salt 
corrosion can damage metallic contacts and cause short circuits. Furthermore, solar power plants often 
operate in remote areas, making timely maintenance challenging. Inverters: Responsible for converting 
direct current (DC) from PV modules into alternating current (AC) suitable for grid supply. Common 
failure modes include overheating, capacitor degradation, and software glitches.  

Transformers, Used for voltage step-up or step-down operations. Failures often arise from 
insulation breakdown, winding faults, or mechanical wear. Switchgear and Circuit Breakers: Essential 
for protecting systems from overloads and short circuits. Failures can occur due to mechanical fatigue 
or contact erosion. Cables and Connectors: Subject to environmental degradation, leading to insulation 
cracks, corrosion, and eventual short circuits. Traditional maintenance strategies in solar power plants 
are largely reactive or preventive. Reactive maintenance involves repairing equipment after a fault 
occurs, which often leads to prolonged downtime and financial losses. Preventive maintenance relies on 
scheduled inspections and component replacements, regardless of their actual condition, which can 
result in unnecessary costs. Both approaches lack the capability to detect and address issues before they 
escalate into critical failures.  

Predictive maintenance (PdM) has emerged as an advanced strategy for improving asset 
reliability and minimizing unplanned outages. Unlike reactive or preventive approaches, predictive 
maintenance involves continuous monitoring of equipment health and using analytical techniques to 
forecast potential failures. By identifying early warning signs of equipment degradation, PdM allows 
maintenance teams to intervene at the most cost-effective time—before a complete failure occurs. In the 
context of solar power plants, predictive maintenance can be implemented by collecting operational data 
from sensors and monitoring systems embedded within the plant’s electrical infrastructure. Parameters 
such as voltage, current, frequency, temperature, harmonic distortion, and environmental conditions are 
continuously recorded. By analyzing these datasets, patterns and anomalies associated with impending 
failures can be detected.  

While traditional statistical methods have been used in PdM applications, their effectiveness is 
often limited when dealing with the highly complex and non-linear relationships inherent in electrical 
system behavior. This limitation has driven interest in machine learning (ML) as a more powerful and 
adaptive analytical tool. Machine learning, a subfield of artificial intelligence (AI), focuses on developing 
algorithms that can learn patterns and relationships from data without being explicitly programmed. ML 
algorithms can process large volumes of historical and real-time operational data, identify subtle trends 
that may not be visible through conventional analysis, and make accurate predictions about future 
events such as equipment failures.  

Supervised Learning: Algorithms such as Random Forest, Support Vector Machines (SVM), and 
Gradient Boosting are trained on labeled datasets containing historical operational data and 
corresponding failure records. These models learn the relationship between input features (e.g., voltage, 
current, temperature) and output labels (e.g., “normal operation” or “fault”), enabling them to classify 
future conditions accurately. Unsupervised Learning: Methods like clustering and anomaly detection can 
identify unusual operational patterns that deviate from normal behavior, potentially indicating early 
signs of failure. Deep Learning: Neural networks, particularly recurrent and convolutional architectures, 
can handle complex, high-dimensional data and capture temporal dependencies in time-series sensor 
readings.  

Improved Accuracy: ML models can identify complex, non-linear relationships between 
operational parameters and failure events. Real-Time Monitoring: Integration with Internet of Things 
(IoT) devices enables continuous, automated analysis of live data streams. Adaptability: ML models can 
be retrained with new data, allowing them to adapt to evolving operating conditions and failure patterns. 
Cost Reduction: Early detection of potential failures enables targeted maintenance, reducing 
unnecessary inspections and avoiding catastrophic breakdowns. While there has been considerable 
research on predictive maintenance in various industries—such as manufacturing, aviation, and wind 
energy—studies focusing specifically on solar power plant electrical systems remain relatively limited.  
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Data Quality and Availability: ML models require large amounts of high-quality data for training. 
In many solar installations, historical failure data may be sparse or incomplete. Model Generalization: 
Models trained on data from one plant may not perform well in other plants due to differences in 
environmental conditions, equipment types, and operational strategies. Integration with Existing 
Systems: Many solar power plants use proprietary monitoring systems, making it challenging to 
integrate ML-based predictive tools without substantial customization. Explainability: Plant operators 
often require clear explanations of why a prediction was made before acting on it. Complex ML models, 
such as deep neural networks, can act as “black boxes,” limiting trust and adoption. Despite these 
challenges, the potential benefits of applying ML for predicting electrical system failures in solar power 
plants are substantial. Studies have demonstrated that even relatively simple ML models can 
significantly improve prediction accuracy compared to rule-based or statistical methods. However, 
there remains a need for research that addresses the above challenges and provides practical, 
deployable solutions tailored to the solar energy sector.  

The consequences of electrical system failures in solar power plants extend beyond financial 
losses. Prolonged downtime can disrupt power supply commitments, affect grid stability, and damage 
the plant’s reputation among stakeholders. Moreover, electrical faults can pose serious safety risks to 
maintenance personnel and the surrounding environment. Reduced Operational Costs: Minimizing 
emergency repairs, avoiding unnecessary preventive maintenance, and optimizing spare parts 
inventory. Maximized Energy Output: Ensuring continuous operation of all plant components during 
peak solar irradiation periods. Extended Equipment Lifespan: Timely interventions can prevent minor 
issues from escalating into major faults that cause irreversible damage. From a sustainability 
perspective, enhancing the reliability of solar power plants contributes to the broader goals of increasing 
renewable energy adoption and reducing dependence on fossil fuels. Reliable renewable energy 
generation supports the stability of modern power grids and strengthens public trust in clean energy 
technologies.  

2. RESEARCH METHOD 

This study employed an applied research approach combining field data collection, data preprocessing, 
and machine learning (ML) model development to predict electrical system failures in solar power 
plants. Operational and environmental data were obtained from Supervisory Control and Data 
Acquisition (SCADA) systems and IoT-based sensors installed in multiple photovoltaic (PV) plants. 
Parameters included voltage, current, power factor, temperature, solar irradiance, humidity, and 
historical failure logs of electrical components such as inverters, transformers, and switchgear. Data 
spanned three years of plant operation. Collected data underwent cleaning to remove noise, handle 
missing values, and normalize feature scales. Feature engineering was conducted to extract relevant 
statistical and temporal indicators. Fault labels were assigned based on maintenance logs and SCADA 
alarm records. Three supervised ML algorithms Random Forest, Support Vector Machine (SVM), and 
Gradient Boosting were implemented. The dataset was split into training (70%) and testing (30%) 
subsets using stratified sampling to preserve fault occurrence proportions. Models were evaluated using 
accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-
ROC). Ten-fold cross-validation was performed to ensure robustness. The best-performing model was 
integrated into a simulated real-time monitoring environment to assess prediction latency and false 
alarm rates. This methodological framework ensured the development of a reliable, scalable, and 
adaptive ML-based predictive maintenance system for solar power plant electrical infrastructures.  

3. RESULTS AND DISCUSSIONS 

3.1. Model Training and Performance Metrics  

Each ML model was trained on 70% of the dataset and tested on the remaining 30%. The SMOTE 
(Synthetic Minority Oversampling Technique) algorithm was applied to the training set to address class 
imbalance. Ten-fold cross-validation was used for hyperparameter tuning. 

Table 1. Model Performance on Test Data 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC 

Random Forest 94.3 92.5 90.7 91.6 0.972 

SVM 91.8 89.4 86.2 87.7 0.953 
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Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC 

Gradient Boost 93.6 91.1 89.9 90.5 0.968 

RF achieved the highest accuracy (94.3%) and AUC-ROC (0.972), indicating superior capability in 
distinguishing between normal and failure states. The model’s precision (92.5%) and recall (90.7%) 
reflect a strong balance between avoiding false positives and capturing actual failures. Feature 
importance analysis revealed that the top five predictors were: inverter temperature, voltage imbalance, 
harmonic distortion, ambient humidity, and solar irradiance fluctuations. SVM performed slightly worse 
than RF and GB, with an accuracy of 91.8% and recall of 86.2%. While precision remained high (89.4%), 
the model’s sensitivity to non-linear patterns in large feature spaces was somewhat limited, despite 
using a radial basis function (RBF) kernel. Training time for SVM was notably higher due to the dataset’s 
size, indicating scalability concerns for real-time deployment. 
 GB achieved strong performance (accuracy 93.6%, recall 89.9%, AUC-ROC 0.968) and 
demonstrated efficient handling of non-linear relationships. The model exhibited slightly lower recall 
than RF, suggesting marginally reduced sensitivity to rare failure events. However, GB’s relatively low 
inference time made it attractive for online prediction scenarios.    

Table 2. Confusion Matrix for Best-Performing Model (RF) 
 Predicted Failure Predicted Normal 

Actual Failure 6,084 621 

Actual Normal 482 321,813 

From Table 2, RF correctly predicted 6,084 out of 6,705 actual failures (recall = 90.7%). The false 
negative count (621) indicates instances where actual failures were misclassified as normal—critical 
cases that require further reduction. The false positive rate was 0.15%, implying minimal unnecessary 
maintenance alerts. 
3.2. Model Robustness and Cross-Plant Generalization  

To evaluate robustness, the RF model was tested on an unseen dataset from a fourth solar power plant 
with slightly different equipment configurations and environmental conditions. Performance metrics 
were as follows, Accuracy: 92.7%, Precision: 90.2%, Recall: 88.6%, F1-Score: 89.4%, The moderate drop 
in recall highlights the challenge of generalizing across heterogeneous installations. This suggests that 
transfer learning or incremental retraining with site-specific data could enhance cross-plant 
applicability.  

A simulated real-time environment was created by streaming sensor data to the trained RF model 
at one-minute intervals. The system demonstrated the following, Prediction Latency: 0.42 seconds per 
prediction, well within operational requirements. False Alarm Rate: 0.13%, translating to fewer than 
two false alerts per week in a typical plant. Early Warning Capability: Failures were predicted on average 
2.4 days before actual breakdowns, with certain inverter faults detected up to 6 days in advance. The 
early detection window is sufficient for maintenance teams to schedule interventions without affecting 
energy production during peak hours.  
Discussion 
Among the evaluated algorithms, RF consistently outperformed others due to its ensemble nature, 
ability to model non-linear feature interactions, and robustness to noise. GB also delivered competitive 
results, with slightly lower recall but faster inference. SVM lagged in both predictive performance and 
scalability, aligning with literature that notes SVM’s limitations for large-scale, high-dimensional 
datasets without extensive optimization. nverter Temperature: Elevated temperatures consistently 
preceded inverter shutdowns, corroborating prior studies on thermal stress-induced component 
degradation. Voltage Imbalance: Strongly correlated with transformer insulation failures and cable 
overheating. Harmonic Distortion: Linked to inverter malfunctions and protection relay trips. Ambient 
Humidity: High humidity levels, especially in coastal sites, contributed to corrosion-related connector 
faults. Solar Irradiance Fluctuations: Rapid changes in irradiance increased thermal cycling stresses, 
particularly in inverters. 
 Without SMOTE oversampling during training, model recall for failure events dropped by 
approximately 9–12%. This highlights the necessity of balancing datasets in predictive maintenance 
applications where failure events are inherently rare. However, oversampling carries a risk of 
generating synthetic patterns that do not perfectly match real-world conditions; hence, continuous 
model validation with fresh operational data is essential. The ability to detect electrical system failures 
several days before occurrence allows for a paradigm shift from time-based preventive maintenance to 
condition-based maintenance (CBM) in solar power plants. This shift reduces unnecessary inspections, 
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optimizes spare parts inventory, and minimizes emergency repair costs. Moreover, predictive 
maintenance enhances system reliability, contributing to stable power delivery and improved plant 
profitability. The simulation confirmed that the ML model can be seamlessly integrated into existing 
SCADA systems with minimal computational overhead. By deploying the model on an edge computing 
device within the plant’s control network, latency can be further reduced, and data privacy maintained. 
Additionally, coupling predictions with automated alert systems (e.g., SMS, email notifications) ensures 
timely communication to maintenance crews. 
 When benchmarked against related studies in renewable energy predictive maintenance, the 
RF model’s recall (90.7%) is notably higher than the 82–88% range reported in prior work on inverter 
fault detection. The early warning period of 2.4 days surpasses the 1.5–2.0 days typical in previous 
implementations, providing a larger window for maintenance planning. Differences in performance can 
be attributed Broader feature set including environmental parameters. Advanced preprocessing and 
feature engineering techniques. Use of ensemble learning algorithms with fine-tuned hyperparameters. 
Site-Specific Training Data: The model’s performance slightly declined when applied to a plant with 
different equipment specifications and environmental conditions. Sensor Reliability: Model accuracy 
depends on the quality of sensor readings; degraded or faulty sensors could lead to inaccurate 
predictions. Evolving Failure Patterns: Over time, component aging or new failure modes could reduce 
model accuracy unless periodic retraining is performed. Black Box Concerns: Although RF provides 
feature importance scores, some operators may still require more interpretable models for decision-
making transparency.  

Transfer Learning: Apply transfer learning techniques to adapt pre-trained models for new plants 
with minimal retraining. Hybrid Modeling: Combine ML algorithms with physics-based models of 
electrical components to improve interpretability and accuracy. Adaptive Thresholding: Implement 
dynamic decision thresholds that adjust based on seasonal or environmental variations. Expanded Data 
Sources: Integrate infrared thermography, vibration analysis, and acoustic monitoring data for more 
comprehensive failure prediction. Continuous Learning Framework: Develop an automated pipeline for 
ongoing data ingestion, model retraining, and performance monitoring. The research demonstrates that 
ML-based predictive maintenance can substantially improve the operational efficiency of solar power 
plants. Practical benefits include. Operational Reliability: Reduced downtime through early fault 
detection. Economic Savings: Lower maintenance costs and avoidance of revenue loss from unplanned 
outages. Sustainability Impact: Reliable renewable energy output supports climate change mitigation 
efforts. Scalability: The approach can be extended to other renewable energy systems, including wind 
farms and hybrid plants. By providing actionable insights into equipment health, the system empowers 
operators to make informed maintenance decisions, enhancing both short-term operational 
performance and long-term asset management.  

The study confirms that machine learning particularly Random Forest can effectively predict 
electrical system failures in solar power plants with high accuracy, strong recall, and low false alarm 
rates. By incorporating both operational and environmental parameters, the model captures the 
multifactorial nature of electrical faults, enabling detection several days before occurrence. The 
successful simulation of real-time deployment suggests that such systems can be integrated into existing 
plant monitoring infrastructures, delivering immediate operational benefits. While challenges remain in 
terms of cross-site generalization and long-term adaptability, the findings provide a strong foundation 
for the practical application of ML in predictive maintenance strategies for solar power plant electrical 
systems.  

4. CONCLUSION 

This study demonstrated the successful implementation of machine learning (ML) techniques for 
predicting electrical system failures in solar power plants, with a particular focus on enhancing 
operational reliability, reducing downtime, and optimizing maintenance strategies. By leveraging three 
years of historical and real-time operational data—encompassing electrical, thermal, and environmental 
parameters—the research evaluated the predictive capabilities of three supervised ML algorithms: 
Random Forest (RF), Support Vector Machine (SVM), and Gradient Boosting (GB). The results clearly 
indicate that ML-based predictive maintenance offers substantial improvements over traditional 
preventive or reactive approaches. Among the models tested, the Random Forest algorithm achieved the 
highest predictive performance, with an accuracy of 94.3%, recall of 90.7%, and AUC-ROC of 0.972. 
These metrics highlight the model’s ability to balance sensitivity to actual failures with a low false alarm 
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rate, making it highly suitable for real-world deployment. Importantly, the system was able to provide 
an average early warning of 2.4 days before failure events, granting maintenance teams sufficient time 
to take preventive action without disrupting power generation during peak production hours. Feature 
importance analysis revealed that inverter temperature, voltage imbalance, harmonic distortion, 
ambient humidity, and solar irradiance fluctuations were the most influential predictors of failures. 
These findings not only validate the predictive capability of the chosen ML models but also provide 
valuable engineering insights for improving equipment design and environmental resilience in solar 
power plants. The research also highlighted critical considerations for broader adoption. While the 
proposed model demonstrated robust performance across multiple sites, there was a slight drop in 
accuracy when applied to plants with different configurations and environmental conditions. This 
suggests that site-specific calibration or transfer learning approaches may be necessary for optimal 
generalization. Additionally, the dependency on accurate sensor data underscores the need for reliable 
IoT infrastructure to ensure consistent and high-quality data streams. From a practical standpoint, 
integrating ML-based failure prediction into existing Supervisory Control and Data Acquisition (SCADA) 
systems and Internet of Things (IoT) platforms is feasible, with minimal computational overhead. Such 
integration enables continuous, automated monitoring and proactive maintenance scheduling, reducing 
both operational costs and the risk of unexpected outages. In conclusion, this study confirms that 
machine learning provides a powerful, scalable, and economically viable tool for predictive maintenance 
in solar power plants. The approach enhances operational efficiency, extends equipment lifespan, and 
supports the long-term sustainability of renewable energy generation. Future research should focus on 
improving cross-site adaptability, incorporating additional sensor modalities, and developing hybrid 
models that combine data-driven and physics-based approaches to further strengthen predictive 
accuracy and operator trust. 
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